Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Genomics ; 70: 101044, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37196472

RESUMO

Haliotis midae or "perlemoen" is one of five abalone species endemic to South Africa, and being palatable, the only commercially important abalone species with a high international demand. The higher demand for this abalone species has resulted in the decrease of natural stocks due to overexploitation by capture fisheries and poaching. Facilitating aquaculture production of H. midae should assist in minimising the pressure on the wild populations. Here, the draft genome of H. midae has been sequenced, assembled, and annotated. The draft assembly resulted in a total length of 1.5 Gb, contig N50 of 0.238 Mb, scaffold N50 of 0. 238 Mb and GC level of 40%. Gene annotation, combining ab initio and evidence-based pipelines identified 52,280 genes with protein coding potential. The genes identified were used to predict orthologous genes shared among the four other abalone species (H. laevigata, H. rubra, H. discus hannai and H. rufescens) and 4702 orthologous genes were shared across the five species. Among the orthologous genes in abalones, single copy genes were further analysed for signatures of selection and several molecular regulatory proteins involved in developmental functions were found to be under positive selection in specific abalone lineages. Furthermore, whole genome SNP-based phylogenomic assessment was performed to confirm the evolutionary relationship among the considered abalone species with draft genomes, reaffirming that H. midae is closely related to the Australian Greenlip (H. laevigata) and Blacklip (H. rubra). The study assists in the understanding of genes related to various biological systems underscoring the evolution and development of abalones, with potential applications for genetic improvement of commercial stocks.


Assuntos
Gastrópodes , Genômica , Animais , Austrália , Genoma , Anotação de Sequência Molecular , Aquicultura/métodos , Gastrópodes/genética
2.
Mol Ecol ; 32(13): 3368-3381, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36946911

RESUMO

Africa is considered the "mother continent" from which the first hominins arose. The diversified wildlife and flora of Africa, which ranges from those in the scorching Sahara and Kalahari deserts to those in the vast Savannas and wet tropical forests, are also the most diverse of any continent. Although the continent's abundance and diversity of living resources have provided critical means of subsistence for its inhabitants, future utilization of this biodiversity will demand a fundamental understanding of genetic variation and its adaptive capabilities in the face of natural and man-made stressors. Molecular ecological insights have previously been gained from a variety of vertebrate species native to Africa, and some of these discoveries have larger evolutionary and conservation implications. Despite lagging in genomics research, African scientists are increasingly eager to use the increasingly accessible -omics technology to routinely sequence more animals and plants native to Africa. This overview, which focuses on Africa's vertebrate biodiversity, aims to provide a continental scale perspective on organismal and ecological adaptations discovered through prior genomics research, as well as what conceptually these findings suggest for future research.


Assuntos
Florestas , Genômica , Animais , África , África do Norte , Vertebrados/genética , Biodiversidade , Conservação dos Recursos Naturais
3.
Curr Protoc ; 2(5): e449, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35612494

RESUMO

Cross-species exome sequencing approaches provide unprecedented avenues for obtaining genetic diversity, evolutionary relationships, and functional information from a variety of organisms including non-model species. These approaches offer cost-effective opportunities to study multiple individuals or species in parallel, but also create bioinformatics challenges in the application of multiple but powerful bioinformatics tools for the identification of homologous gene families across individual or species boundaries. Popular tools of this kind include SPAdes for sequence assembly, AUGUSTUS for ab initio gene prediction, and BLAST for building homologous sequence families. These tools can also be sophisticated in terms of installation and usage. Here, we present detailed steps on how to run these tools for the recovery and clustering of exon sequences from cross-species raw exome-capture data into homologous sequence families. We also present a utility pipeline, CODSEQCP, that automates these steps to cluster exon sequences, facilitating population genomics and evolutionary studies. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Reads assembly using SPAdes Basic Protocol 2: Coding sequence extraction using AUGUSTUS Basic Protocol 3: Sequence clustering using BLAST Alternate Protocol: How to run CODSEQCP.


Assuntos
Biologia Computacional , Exoma , Análise por Conglomerados , Biologia Computacional/métodos , Exoma/genética , Humanos , Homologia de Sequência
4.
PeerJ ; 5: e3145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28396824

RESUMO

BACKGROUND: The capacity of visually oriented species to perceive and respond to visual signal is integral to their evolutionary success. Giraffes are closely related to okapi, but the two species have broad range of phenotypic differences including their visual capacities. Vision studies rank giraffe's visual acuity higher than all other artiodactyls despite sharing similar vision ecological determinants with many of them. The extent to which the giraffe's unique visual capacity and its difference with okapi is reflected by changes in their vision genes is not understood. METHODS: The recent availability of giraffe and okapi genomes provided opportunity to identify giraffe and okapi vision genes. Multiple strategies were employed to identify thirty-six candidate mammalian vision genes in giraffe and okapi genomes. Quantification of selection pressure was performed by a combination of branch-site tests of positive selection and clade models of selection divergence through comparing giraffe and okapi vision genes and orthologous sequences from other mammals. RESULTS: Signatures of selection were identified in key genes that could potentially underlie giraffe and okapi visual adaptations. Importantly, some genes that contribute to optical transparency of the eye and those that are critical in light signaling pathway were found to show signatures of adaptive evolution or selection divergence. Comparison between giraffe and other ruminants identifies significant selection divergence in CRYAA and OPN1LW. Significant selection divergence was identified in SAG while positive selection was detected in LUM when okapi is compared with ruminants and other mammals. Sequence analysis of OPN1LW showed that at least one of the sites known to affect spectral sensitivity of the red pigment is uniquely divergent between giraffe and other ruminants. DISCUSSION: By taking a systemic approach to gene function in vision, the results provide the first molecular clues associated with giraffe and okapi vision adaptations. At least some of the genes that exhibit signature of selection may reflect adaptive response to differences in giraffe and okapi habitat. We hypothesize that requirement for long distance vision associated with predation and communication with conspecifics likely played an important role in the adaptive pressure on giraffe vision genes.

5.
BMC Evol Biol ; 17(1): 54, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209121

RESUMO

BACKGROUND: Toll-like receptors (TLRs) are the frontline actors in the innate immune response to various pathogens and are expected to be targets of natural selection in species adapted to habitats with contrasting pathogen burdens. The recent publication of genome sequences of giraffe and okapi together afforded the opportunity to examine the evolution of selected TLRs in broad range of terrestrial ungulates and cetaceans during their complex habitat diversification. Through direct sequence comparisons and standard evolutionary approaches, the extent of nucleotide and protein sequence diversity in seven Toll-like receptors (TLR2, TLR3, TLR4, TLR5, TLR7, TLR9 and TLR10) between giraffe and closely related species was determined. In addition, comparison of the patterning of key TLR motifs and domains between giraffe and related species was performed. The quantification of selection pressure and divergence on TLRs among terrestrial ungulates and cetaceans was also performed. RESULTS: Sequence analysis shows that giraffe has 94-99% nucleotide identity with okapi and cattle for all TLRs analyzed. Variations in the number of Leucine-rich repeats were observed in some of TLRs between giraffe, okapi and cattle. Patterning of key TLR domains did not reveal any significant differences in the domain architecture among giraffe, okapi and cattle. Molecular evolutionary analysis for selection pressure identifies positive selection on key sites for all TLRs examined suggesting that pervasive evolutionary pressure has taken place during the evolution of terrestrial ungulates and cetaceans. Analysis of positively selected sites showed some site to be part of Leucine-rich motifs suggesting functional relevance in species-specific recognition of pathogen associated molecular patterns. Notably, clade analysis reveals significant selection divergence between terrestrial ungulates and cetaceans in viral sensing TLR3. Mapping of giraffe TLR3 key substitutions to the structure of the receptor indicates that at least one of giraffe altered sites coincides with TLR3 residue known to play a critical role in receptor signaling activity. CONCLUSION: There is overall structural conservation in TLRs among giraffe, okapi and cattle indicating that the mechanism for innate immune response utilizing TLR pathways may not have changed very much during the evolution of these species. However, a broader phylogenetic analysis revealed signatures of adaptive evolution among terrestrial ungulates and cetaceans, including the observed selection divergence in TLR3. This suggests that long term ecological dynamics has led to species-specific innovation and functional variation in the mechanisms mediating innate immunity in terrestrial ungulates and cetaceans.


Assuntos
Cetáceos/genética , Evolução Molecular , Mamíferos/genética , Receptores Toll-Like/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bovinos/genética , Ecossistema , Girafas/genética , Imunidade Inata , Seleção Genética , Especificidade da Espécie , Receptores Toll-Like/química
6.
Nat Commun ; 7: 11519, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27187213

RESUMO

The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions.


Assuntos
Genoma , Girafas/genética , Girafas/fisiologia , Adaptação Fisiológica , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Sequência de Bases , Evolução Biológica , Desenvolvimento Ósseo/genética , Análise por Conglomerados , Ontologia Genética , Redes Reguladoras de Genes , Variação Genética , Girafas/anatomia & histologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...